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Hedonic model with discrete consumer heterogeneity and
horizontal differentiated housing⇤

Masha Maslianskaia-Pautrel†

February 11, 2015

Abstract

This paper investigates how the hedonic equilibrium is modified when discrete consumer
heterogeneity with horizontal differentiated housing supply is assumed. Our results are
threefold. First, discrete consumer heterogeneity leads to a segmentation of the hedonic price
function at equilibrium and the discontinuity of the implicit price of environmental quality
on the borders of the segments. Second, we demonstrate that horizontal differentiation may
lead to a partial sorting of consumer demand for housing attributes at hedonic equilibrium.
Finally, we show that the discrete consumer heterogeneity with horizontal differentiation
can lead to modification of welfare assessment related to changes in environmental quality.

JEL classification : R21, R31, Q51
Keywords : Hedonic model, Discrete consumer heterogeneity, Horizontal differentiation,
Locational choice

Introduction

The hedonic model analyzes consumer choice of differentiated goods. It permits the estimation

of the value of the non-market attributes of the differentiated good. The most common empirical

application of the hedonic model is in environmental economics when evaluating local amenities

and/ nuisances (see for example, Boyle and Kiel, 2001; Simons and Saginor, 2006). The goal

of environmental hedonic valuation is to use the price function of a differentiated good (usually

housing) to identify individual demand for amenities or, at least, marginal willingness to pay

(MWTP) for marginal improvement in environmental quality. The method makes two main

assumptions: that consumers assign a value to the environmental quality and that this value is
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suggestions. We wish to acknowledge, without implicating, the participants of the 19th Annual Conference of the
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reflected in housing price. Achieving this goal depends on assumptions about consumers’ and

housing heterogeneity.

In the present paper we build a theoretical hedonic model to investigate the consequences

of exogenous segmentation of consumers in the presence of horizontal differentiated housing.1

We adopt the same structure as the main theoretical approaches of hedonic modeling, i.e. a

continuum of heterogeneous consumers, each buying a differentiated good (housing) represented

by heterogeneous attributes (including environmental quality). However, our model assumes a

discrete heterogeneity on the demand side and continuous heterogeneity on the supply side.2

Horizontal differentiation generally means that different consumers, or in the present study

groups of consumers, have different preferences for the same house (i.e. with the same attributes).

We make a distinction between two cases of the horizontal differentiation. In the first case, the

horizontal differentiation only concerns the environmental quality of a dwelling: every group

has differing preferences for environmental quality of housing but share the same preferences

for other housing attributes. In the second case, the groups have differing preferences for all

housing attributes. The two cases lead to different consequences for the hedonic equilibrium, the

hedonic price function, the implicit prices of housing attributes and thus for the environmental

hedonic valuation.

The existing literature exhibits two main theoretical approaches to hedonic modeling which

differ in their assumptions regarding the nature of heterogeneity. The “Traditional” Hedonic

Model, developed by Rosen (1974), analyzes the properties of the hedonic price function which

arises at equilibrium when a continuum of heterogeneous consumers choose among a continuum

of differentiated goods. Consumer heterogeneity parameters and the attributes of goods are
1We consider here a partial equilibrium setting. To complete the model in a general equilibrium setting would

require the existence of a labor market and a land market. A joint housing and labor markets setting in a sorting
model is investigated by Kuminoff (2011). Hidano (2010) analyses different types of capitalization hypothesis
and their consideration in hedonic modeling. The general equilibrium analysis is outside the scope of this paper
but could constitute a path for further investigations.

2In contrast with Ekeland (2010), the question here is to study the implications of the groupwise consumer
heterogeneity and horizontal differentiation on supply side, to the environmental hedonic valuation. It involves
studying a general case of the utility function (non-separable), and imposing additional restrictions about the
structure of supply and demand to be consistent with the empirical environmental hedonic literature.
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supposed to be continuously distributed. Rosen’s model leads to the famous two-stage estimation

procedure: in the first stage the hedonic price function is estimated and the marginal willingness

to pay for the environmental attribute is calculated, in the second stage the environmental

demand is identified. The second approach, called “New Hedonic” or “Sorting”, which developed

following a seminal article by Tiebout (1956), concerns the provision of local public goods.3

Sorting models assume a continuous income and/or taste heterogeneity of consumers who choose

a location from a finite number of possible communities. These models therefore assume a

discrete heterogeneity of environmental quality on the supply side.4 In sorting models, the price

function does not identify the environmental demand or the MWTP. Given a utility function,

one can characterize the market sorting of the consumers between communities and analyze how

it affects decision making. Neither of the two approaches address the case of discrete consumer

heterogeneity.

Discrete heterogeneity means that there is a finite number of different consumer groups (even

if there is always a continuum of consumers). Such heterogeneity may have various origins: bor-

rowing constraints (for example, depending the temporary or permanent nature of employment

the ability of an agent to borrow can differ), family structure (single, family without children,

family with young children, etc), job market position (active or retired, working locally or com-

muting, etc). The different sources of this discrete consumer heterogeneity may lead to different

types of housing differentiation. When consumers agree about the ranking of housing, this is

vertical differentiation. Income heterogeneity is a “classical” source of vertical differentiation

(see, for example, Shaked and Sutton, 1981). When different consumers have different prefer-

ences about the same housing, there is horizontal differentiation. In all cases, the consequences

of discrete consumer heterogeneity are important for hedonic equilibrium. Ex ante all consumers

have the ability to distinguish between all housing in the relevant market. But, ex post con-
3See a recent review of the sorting literature by Kuminoff et al. (2010) for a comprehensive analysis of the use

of sorting models in environmental policy evaluation.
4Environmental quality, such as air quality, can be thought of as homogeneous within one community and

heterogenous between different communities if the size of each community is relatively small (see, for example,
Kuminoff, 2009).
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sumers reveal their type through their consumption choices, and consumer types sort themselves

into different segments of the market. Thus, the hedonic price function which characterizes the

equilibrium of the whole market, is dependent on individual characteristics and the definition

of the hedonic equilibrium is therefore modified. Furthermore, discrete consumer heterogeneity

may have important implications when public policies modifying the attributes of all or a subset

of housing (e.g. projects to improve environmental quality (noise or air pollution diminution),

urban renewal projects, or transport policies to improve accessibility) are evaluated. These

policies may have a sizable impact on housing supply, which may shift the whole hedonic price

function. When the hedonic price function is segmented and each segment corresponds to one

group, moving the hedonic price function may lead to further implications for the overall welfare

impact of the policy.

Baudry and Maslianskaïa-Pautrel (2012) develop a hedonic model where a discrete hetero-

geneity of consumers is assumed with vertically differentiated housing. The authors demonstrate

that such a discrete heterogeneity with vertical differentiation can lead to the segmentation of the

hedonic price function. This framework goes beyond Rosen’s model and thus it questions the use

of the two-stage estimation procedure. The authors also show that the impact of segmentation

is important when the number of consumer groups is small.

However, the Baudry and Maslianskaïa-Pautrel (2012) model does not take into account the

cases where a number of population groups coexist on the same territory and different groups

have different preferences about the same housing attributes, namely environmental quality.

Generally such cases can arise when the territory is highly heterogeneous, for example when it

contains rich natural resources on the one hand and significant industrial development or thriving

touristic and recreational areas on the other hand (e.g. coastal or mountainous regions). The

French Loire estuary area is a good example with three well-defined population groups: residents

working in the area (around 45-60%); residents working outside the area and choosing the area

for its environmental quality and its proximity to employment, such as in a regional capital,
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Nantes in this case (around 20-25%); and retirees choosing this area because of its environmental

quality (around 20-30%).5 With such distinct groups in the same area, we would expect housing

attribute preferences, especially for the environmental quality, to differ between groups. For

example, proximity to a major road network would mean only noise pollution for one group,

but for another group this proximity could also mean an amenity, a reduction in time spent

commuting to work. Thus the housing supply is horizontally differentiated, in the spirit of

Lancaster (1966), i.e. the aggregation of attributes of the same house generates a different

index of housing services for at least two consumers. Further, in these areas, a small number of

consumer groups is a reasonable assumption. We can observe such a heterogeneity with a small

number of consumer groups in other areas. Lipscomb and Farmer (2005) find three types of

households within a single neighborhood: “low income students” who rent their accomodation,

“young adults” who rent a larger house or purchase less expensive homes and “more established

homeowners”.

Similarly to Baudry and Maslianskaïa-Pautrel (2012), we assume a discrete heterogeneity of

consumers. But our current model differs significantly because horizontal differentiation leads

to different consumer behavior, modifying the existence of equilibrium and its implications. Our

main results are threefold. First, the groupwise consumers heterogeneity leads to a segmenta-

tion of the hedonic price function in the housing market equilibrium. Hedonic price function

is continuous, but built of different segments which correspond to different consumer groups.

Therefore, the segmentation of the hedonic price function implies a discontinuity of the implicit

price of the environmental quality of housing on the borders of the segments. This means that

the second stage of the “usual” hedonic estimation procedure (where the implicit price func-

tion is assumed to be continuous) cannot be used.6 Thus, our result extends the Baudry and

Maslianskaïa-Pautrel (2012) finding with vertical differentiated housing, and highlights the role
5Data sources: census track data, INSEE, RP2007, Principal and complementary operations.
6This result calls for further investigations into empirical implications which are outside the scope of this

paper. In this field some connections can be made with the nonparametric approach used by Ekeland et al.
(2004) and Heckman et al. (2010). They stress the importance of nonparametric estimation of the hedonic price
function. Such nonparametric models would be able to handle the discontinuities in the implicit prices.
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played by discrete heterogeneity on the demand side of hedonic equilibrium.

The second result is the sorting of consumer demand. We demonstrate that the segmentation

of the hedonic price function may lead to partial sorting of the demand for housing attributes by

consumer groups with a horizontal differentiation of housing supply (namely, when the horizontal

differentiation concerns all housing attributes). This result differs from the case of vertical

differentiated housing supply described in Baudry and Maslianskaïa-Pautrel (2012). It can

also be viewed as dual to the partial two-dimensional stratification by consumer income and

preferences in sorting models (see Epple and Platt, 1998).

Finally, the third result concerns consumer surplus in equilibrium. With fixed supply and

short-run assumptions, a certain number of the sellers extract the overall consumer surplus of

one or more groups, but not necessarily from the group with the lowest preferences for housing

attributes. Thus the segmentation affects the welfare impact of changes in environmental quality.

Section 1 presents the general framework of the model. Section 2 derives equilibrium condi-

tions. And section 3 discusses the principal results of the model and their implications.

1 General framework

In the economy, there are two consumption goods: housing and a numeraire. Housing is char-

acterized by two attributes, S, the intrinsic attribute, and Q, the environmental attribute,

aggregated into a housing service index H: H = h(Q,S).7 As in the Rosen (1974) model, the

housing price, P, depends on these attributes: P = P (Q,S).8

7In the real market, houses have many different structural characteristics (e.g. bedrooms, bathrooms, square
footage, lot size). The scalar S, representing the intrinsic attribute of the dwelling, can be viewed as a theoretically
consistent index of “physical housing services”. This idea dates back to the work on price indexes by Samuelson
and Swamy (1974) and is used in the sorting model by Sieg et al. (2002). In sorting models, the function of
housing service is supposed to be separable between a “quantitative” index of intrinsic characteristics of dwelling
S and a “qualitative” index of its environmental and neighborhood characteristics Q (Kuminoff, 2009).

8In this respect, our model differs from sorting models, where only the qualitative environmental attribute Q
determines the price of housing (cf. Kuminoff, 2009). In our case, the price depends on both the intrinsic and
environmental characteristics of housing.
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1.1 Consumer behavior

We assume a discrete (group-wise) heterogeneity of households: a finite number N of consumer

types who choose continuous combinations of housing characteristics. The population in each

group is equal to ⌘i (i group index) and the entire population is normalized to 1:
PN

i=1

⌘i = 1.

Household preferences are homogenous within each group. Households in different groups

are heterogeneous in their taste, �, for housing attributes. This means that the housing service

index depend on the �i of each group, and can be given as: H = h(Q,S|�i).

We assume the function h(·) belongs to the class C1, is increasing, concave, and satisfies the

Spence-Mirrlees single crossing condition in �:9

@

@�



@H/@Q

@H/@S

�

> 0, 8�. (H0)

We assume that groups are positioned in increasing order for the parameter �: �
1

< ... < �N .

Following the Rosen’s model, we consider an individual from group i using her income R

to purchase the numeraire good, denoted by X, and a dwelling, characterized by its level of

service H = h(Q,S|�i). A household’s utility (corresponding to the group’s utility function)

depends on the housing service level and on its consumption of the numeraire. We assume that

households are homogeneous in their income as well as their preferences between housing or other

consumption.10 The utility function of a household in a group i is given by U(h(Q,S|�i), X),

where �i is the group’s parameter of heterogeneous preferences for housing attributes.11 We

assume that the utility function belongs to the class C2, is increasing, and is concave in its

arguments.

The budget constraint of a household in a group i is given by X + P (Q,S) = R. When

replacing the consumption of X by the maximum quantity that the household can spend given its
9Without loss of generality we assume that MRSQS is increasing in �.

10 Since the income heterogeneity is rather continuous, if we allow the income heterogeneity we should to deal
with conditional distribution of income in each preference group. We prefer to concentrate on one source of
heterogeneity to highlight the role of discrete heterogeneity of consumers.

11The individual utility depends also on other parameters, common to all consumers in the group. To simplify
the notation, this set of parameters is omitted.
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income and the price of the housing, we obtain a constrained utility function V (h(Q,S|�i), P ) ⌘

U(h(Q,S|�i), R� P (Q,S)).

We assume that the constrained utility function (and thus the group bid function) satisfies

the following Spence-Mirrlees conditions:

8S, @

@�



@V/@h · @h/@Q
@V/@P

�

< 0, 8�, (H1)

8Q,
@

@�



@V/@h · @h/@S
@V/@P

�

> 0, 8� (H2)

The constrained utility function is used to introduce the fundamental concept of Rosen’s bid

function.

Definition 1. Rosen’s bid function for an individual of group i is defined implicitly by:

V (h(Q,S|�i), E(k)
i (Q,S|�i, u(k)i )) = u

(k)
i , (1)

where u
(k)
i , reference utility level, represents the level of utility attained by the individual at her

current location k with the index of housing services H = h(Q(k), S(k)|�i) and the price P (k).

In the space (Q,S, P ) the bid surface coincides with the surface of iso constrained utility,

therefore the groups’ bid surfaces also satisfy the single-crossing properties (H1) and (H2).

Figure 1: Single-crossing property of groups’ bid surfaces under H
00
1 and H

00
2

βi<βj

P

Q

E j (q
,s|β

j,uj
)

E i (q,s|β
i,ui) 

Q
∼0

S   fixed

S
∼

Projection of the groups i and j bid surfaces
on the plan (Q,P) for a given level of S

Projection of the groups i and j bid surfaces
on the plan (S,P) for a given level of Q

P

S

E j (q,s|βj,
uj) 

E i (
q,s
|βi
,ui)

 

0

Q  fixed

The condition (H1) means that in the space (Q,P ) for a given value of S, the slopes of the
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bid curves increases with �. A larger � corresponds to stronger individual preferences for the

environmental quality.

Figure 1 illustrates an economic interpretation of the Spence-Mirrlees conditions (H1) and

(H2). Condition (H2) means that in the space (S, P ) for a given level of Q, the slopes of the

bid curves decreases with �. On the right of the intersection of two bid curves, ˜S, consumers

in the group with a higher � are willing to pay a lower price for housing with the same level of

intrinsic quality S > ˜S, and on the left of ˜S those consumers (with higher �) are willing to pay

a higher price for housing with the same level of intrinsic quality S < ˜S.

Conditions (H1) and (H2) show that housing attributes could be viewed as substitutes

for each other and the degree of the substitutability depends on the value of �. In this case,

each group has its specific valuation of housing with Q = 0 (“outside the environmental quality

housing” ) and housing with S = 0 (“outside the intrinsic quality housing”):

E(0, S|�i, u(ki)i ) 6= E(0, S|�j , u
(kj)
j ), if �i 6= �j

E(Q, 0|�i, u(ki)i ) 6= E(Q, 0|�j , u
(kj)
j ), if �i 6= �j

The Spence-Mirrlees conditions imply that two arbitrary bid surfaces of two different groups

have only one intersection line. We define the intersection line of two groups i and j as a locus of

the points (q, s) such that: Ei(q, s|�i, u(ki)i ) = Ej(q, s|�j , u
(kj)
j ). This equation implicitly defines

the equation of the intersection line, noted s = gij(q).

Proposition 1. The intersection line of two bid functions of two groups is a strictly monotonic

function on the plane (Q,S).

Proof. Immediately from single-crossing conditions H1 and H2.

Equation (1) defines a family of bid functions for households belonging to the group i:

E
(k)
i = E

(k)
i (Q,S|�i, u(k)i ), parameterized by reference utility level u(k)i .
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Households in the same group have the same utility function and the same budget constraints.

Thus, individual optimizing behavior corresponds to the optimizing behavior of the group to

which the household belongs.

The optimization problem of a household’s utility maximization, subject to its budget con-

straint, is equivalent to the problem of its minimization of housing expenditure, i.e.:

8i, min

u
(k)
i 2DUi

E
(k)
i (Q,S|�i, u(k)i ), (Q,S) 2 Dhi, where Dhi is an set (or union of sets) of

values (Q,S), characterizing dwellings purchased by consumers in group i. Since the definition

of bid function includes the consumer budget constraints (as defined from the constrained utility

function), the optimization program of consumers does not have constraints.

1.2 Seller behavior

Following Baudry and Maslianskaïa-Pautrel (2012) we assume the short term case from Rosen’s

hedonic model, where supply is assumed to be fixed. This assumption is consistent with existent

empirical hedonic studies which consider housing stock as constant and, thus, implicitly assume a

short term case (see, for example, Palmquist, 2005). Therefore we assume that housing attributes

are distributed in [0;Q
max

]⇥ [0;S
max

] with a joint density function '(Q,S).12 This assumption

means that sellers do not have control over the Q and S levels of their housing. Thus the seller’s

“offer” function is reduced to a point.

Given these assumptions regarding the housing supply, the utility maximization problem for

each seller s is (Pope, 2006): maxP (Qs,Ss)
U(h(Qs, Ss|�s), R+P (Qs, Ss)), which is equivalent to

the problem of maximizing the selling price of her housing: 8s, 8Hs maxPs(Qs, Ss)

Finally we assume that supply is completed by an “outside the market” alternative: P (0, 0) =

0, 8�. It is always possible to obtain zero housing characteristics for the price P = 0.13

12To simplify the notation and calculations, we assume without loss of generality that Q
min

= 0 and that
S
min

= 0.
13The definition assumes that the “outside the market” alternative does not depend on the type of housing

differentiation, or the nature of consumers heterogeneity.
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1.3 Definition of equilibrium

In the traditional hedonic model, the equilibrium of the housing market is defined when there

exists a function p(Q,S) such that the distribution of housing demand and the distribution

of housing supply are equal, Hd
(Q,S) = Hs

(Q,S), 8 (Q,S), and buyers and sellers have an

optimal behavior (Rosen, 1974).

In the model with segmentation on the demand side, buyers are in homogeneous groups of

non-zero weight, and sellers have to take into consideration buyers’ behavior when they define

their selling prices. Specifically, two types of constraints must be considered for each buyer:

participation and incentive. The first type takes into account the effective participation of the

buyer in the market, that is her arbitrage condition between buying a home and choosing the

alternative “outside the market”. The second constraint represents different alternatives for the

consumer in the market and is her arbitrage condition between the purchase of one particular

dwelling and the purchase of another dwelling on the market. The hedonic equilibrium of the

model with segmentation is therefore defined as:

Definition 2. Hedonic equilibrium of the segmentation model. With the assumptions of

behavior optimization by buyers and sellers, the market equilibrium is reached when market is

clearing and the following three conditions are satisfied:

Condition 1 ( Participation constraint): Each buyer b prefers to purchase housing on the

market rather than the “outside the market” alternative:

8b, V (h(Qb, Sb|�b), P ⇤
(Qb, Sb)) � V (h(0, 0|�b), 0), (Qb, Sb) 2 Dh.

Condition 2 ( Incentive constraints): For unchangeable prices, each buyer is better off with

the housing she buys rather than that bought by other buyers:

8b, V (h(Qb, Sb|�b), P ⇤
(Qb, Sb)) � V (h(Q

0
, S

0 |�b), P ⇤
(Q

0
, S

0
)), 8(Q0

, S
0
) 2 Dh.

Condition 3 ( Maximal surplus extraction): None of the sellers, s, are able to find a buyer

at a higher price:
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8s, Ps(Qs, Ss) = max

b,(k):u
(k)
b 2DUb

Ek
b (Qs, Ss|�b, ukb ).

The set of prices P ⇤ resulting from this optimization program characterizes the hedonic price

function:

Definition 3. Hedonic price. For any level of the index H of housing services, the hedonic

price gives the highest of the individual bids where each individual bid function is defined in

reference to the house bought by the individual and the associated market equilibrium price:

8(Q,S), P (Q,S) = max

u
(k)
b 2DUb

Ek
b (Q,S|�b, ukb ).

In the case of horizontal differentiation, the hedonic equilibrium definition 2 becomes:

8i 2 {1, ..., N}

max

u(i)
Ei

⇣

q, s|�i, u(k)i

⌘

, (q, s) 2 [Qi�1

, Qi]⇥ [Si�1

, Si] (2)

s.c.

V
⇣

h(q, s|�i), Ei

⇣

q, s|�i, u(k)i

⌘⌘

� V (0, 0) (3)

V
⇣

h(q, s|�i), Ei

⇣

q, s|�i, u(k)i

⌘⌘

� V
⇣

h(q̃, s̃|�i), Ej

⇣

q̃, s̃|�j , u(k)j

⌘⌘

, (4)

8j 6= i, (q̃, s̃) 2 [Qj�1

, Qj ]⇥ [Sj�1

, Sj ]

Z Si

Si�1

Z Qi

Qi�1

'(q, s) dq ds = ⌘i (5)

Equation (5) means that the market share of a group i is equal to its weight, i.e. market clearing

condition.

Definition 4. The Participation constraint for group i corresponds to the bid surface for which

the participation constraint introduced by the inequality (3) is saturated. This bid surface is

denoted CPi and defined implicitly from the equation:

V
⇣

h(q, s|�i), CPi

⇣

q, s|�i, u(CP )

i

⌘⌘

= V (0, 0).

Definition 5. The Incentive constraint with respect to the group j for group i corresponds

to the bid surface of the group i for which its incentive constraint (4) with respect to the group

j is saturated. This bid surface is denoted CI
kij
ij (q, s|�i, u

(kij)
i ) and defined implicitly by:
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V
⇣

h(q, s|�i), CI
(kij)
ij

⇣

q, s|�i, u
(kij)
i

⌘⌘

= V
⇣

h(q̃, s̃|�i), E
kj
j

⇣

q̃, s̃|�j , u
(kj)
j

⌘⌘

,

(q, s) 2 [Qi�1

, Qi]⇥ [Si�1

, Si] , (q̃, s̃) 2 [Qj�1

, Qj ]⇥ [Sj�1

, Sj ].

2 Existence of the hedonic equilibrium

It is easy to show that the following equilibrium property is verified:

Proposition 2. If at equilibrium the individual A from group i buys a house with housing

services level H⇤
A = h(Q⇤

A, S
⇤
A|�i) for the price P ⇤

A = E⇤
i (H

⇤
A|�i, u⇤i ), thus:

Pj(H
⇤
j ) > E⇤

i (H
⇤
j |�i, u⇤i ), 8j : �j 6= �i; (6)

PB(H
⇤
B) = E⇤

j (H
⇤
B|�i, u⇤i ), 8B : �B = �A = �i (7)

Proof. The proof is straightforward from the definition of the bid function and the fact that

the utility function is increasing with respect to its arguments, which implies an increase in the

value of the group’s utility following the downward displacement of the group bid surface.

The proposition means that : i) for a group i, the prices of houses purchased by consumers

of other groups can not be located below the equilibrium bid surface of the group i, and ii) the

prices of houses purchased by consumers of the group i belong on the same group’ equilibrium

bid surface.

To analyze the existence of a hedonic equilibrium and its characteristics, we proceed in two

steps. The first step is to examine the set of group incentive constraints, the second step is

to examine their participation constraints. The existence of the equilibrium depends on group

preferences in other words the different Spence-Mirrlees conditions presented above.

2.1 Incentive constraints

Consider the isocost curves of the groups’ bid functions in the space (Q,S). By definition of a

bid function, the housing services level along the isocost curve is constant. Therefore, the isocost

curves coincide with the iso-index curves of the housing services (henceforth “ iso-H curves”).

Given the assumptions in function H = h(Q,S|�), the iso-H curves are convex and decreasing
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in the plane (Q,S) and a higher level of H moves the iso-H curve upward. Therefore, a higher

iso-H curve of a group corresponds to a higher level of utility, ceteris paribus.

Proposition 3. At equilibrium, the iso-H curves are ordered in the plane (Q,S) in increasing

order of � from the left to the right along the Q axis.

Proof. See Appendix A.1.

Theorem 1. At equilibrium, only the incentive constraints with respect to adjacent groups

are saturated.14

Demonstration. See Appendix A.2.

Definition 6. The boundary between two groups i and j is the curve of intersection of the

equilibrium groups bid surfaces.

Corollary 1. At equilibrium the hedonic price function is continuous.

Proof. The result follows from Proposition 2 and the theorem 1.

At equilibrium the boundary s = gi,i�1

(q) between groups i and i�1 has the follow property:

Proposition 4. The boundary between two groups s = gi,i�1

(q) is an increasing function in

q.

Proof. Follows from proposition 1.

To determine the equilibrium, it is required to determine what groups fulfill participation

constraints at equilibrium.
14The result of the theorem 1 can be viewed as symmetric to the result of the Boundary indifference lemma in

the Epple and Platt (1998, p. 28, lemma 1) sorting model, in that Epple and Platt study the case of a continuous
heterogeneity on the demand side and discrete heterogeneity on the supply side, while we study the case of a
discrete heterogeneity on the demand side and a continuous heterogeneity on a supply side
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2.2 Group’s participation constraint and iterative construction of equilib-

rium

Let study participation constraints of the groups i and j such that �i < �j . The curve of

the intersection of these participation constraints does not belong to any coordinate plane,

and levels of housing services of houses with Q = 0 or S = 0 are specific for each group:

h(0, s|�i) 6= h(0, s|�j) and h(q, 0|�i) 6= h(q, 0|�j).

Let Fij(q, fij(q)) be the intersection line of surfaces CPi and CPj . It is defined implicitly by

the following equation: CPi

⇣

q, fij(q)|�i, u(CPi)

i

⌘

= CPj

⇣

q, fij(q)|�j , u
(CPj)

j

⌘

.

According to the conditions (H1) and (H2), to the left of the curve Fij(q, fij(q)) the partic-

ipation constraint of group i is located above the participation constraint of group j, and at the

right of the intersection curve the order is reversed:

CPi

⇣

q, s|�i, u(CPi)

i

⌘

> CPj

⇣

q, s|�j , u
(CPj)

j

⌘

, if s > fij(q) (8)

CPi

⇣

q, s|�i, u(CPi)

i

⌘

< CPj

⇣

q, s|�j , u
(CPj)

j

⌘

, if s < fij(q) (9)

Proposition 5. Under assumption (H1) - (H2) and given the independence of the “outside the

market” alternative from the preference parameter �, all participation constraints are crossing

in the same line: Fij(q, fij(q)) ⌘ F (q, f(q)), 8i, j 2 {1, 2, ..., I}

Proof. See Appendix A.3.

The following proposition defines which group saturates its participation constraint at equi-

librium.

Proposition 6. The group i� which saturates its participation constraint at equilibrium can

be found from the following condition:

i� = min

i2{1,...,I}
i :

i
X

k=1

⌘k � ⇧(f(q)), (10)
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where

⇧(f(q)) =

2

6

6

6

6

6

4

R S
max

0

R f�1

(s)
0

'(q, s) dq ds, if S
max

 Q
max

;

R f(Q
max

)

0

R f�1

(s)
0

'(q, s) dq ds

+

R S
max

f(Q
max

)

R Q
max

0

'(q, s) dq ds, if S
max

> Q
max

.

Proof. See Appendix A.4.

At equilibrium, each group i < i�, saturates its incentive constraint with respect to the suc-

ceding group passing through their shared boundary. Each group i > i�, saturates its incentive

constraint with respect to the preceding group passing through their shared boundary. Figure

4 shows different configurations for boundaries between consumer groups. The boundaries can

be obtained from conditions of equivalence between housing services index supply and demand

distribution:

Thus, on each interior segment, 8 1 < i < I, q 2
⇥

Qi
min

, Qi
max

⇤

, s 2
⇥

Si
min

, Si
max

⇤

:

Qi
min

=



0, if gi�1,i(0) � 0,

g�1

i�1,i(0), if g�1

i�1,i(0) � 0;

Qi
max

=



g�1

i,i+1

(S
max

), if gi,i+1

(Q
max

) � S
max

,

Q
max

, if gi,i+1

(Q
max

) < S
max

.
(11)

Si
min

=



gi,i+1

(0), if gi,i+1

(0) � 0,

0, si g�1

i,i+1

(0) � 0;

Si
max

=



S
max

, if gi�1,i(Qmax

) � S
max

,
gi�1,i(Qmax

), if gi�1,i(Qmax

) < S
max

.
(12)

For the first segment, i = 1, q 2
⇥

0, Q1

max

⇤

, s 2
⇥

S1

min

, S
max

⇤

:

Q1

max

=



g�1

1,2(Smax

), if g
1,2(Qmax

) � S
max

,

Q
max

, if g
1,2(Qmax

) < S
max

.
S1

min

=



g
1,2(0), if g

1,2(0) � 0,

0, if g�1

1,2(0) � 0;

(13)

For the last segment, i = I, q 2
⇥

QN
min

, Q
max

⇤

, s 2
⇥

0, SN
max

⇤

:

QN
min

=



g�1

N�1,N (0), if g0N�1,N (0) � 0,

0, if gN�1,N (0) � 0.
SN
max

=



S
max

, if gN�1,N (Q
max

) � S
max

,
gN�1,N (Q

max

), if gN�1,N (Q
max

) < S
max

;

(14)

Theorem 2. Under assumptions (H1) and (H2), there is an equilibrium on the housing mar-

ket for which the hedonic price function corresponds to the equilibrium groups bid surfaces,

E⇤
i (q, s|�i, u⇤i ), defined through the following equations:

16



E⇤
i� = CPi�(q, s|�i� , u⇤i�), where (15)

CPi�(q, s|�i� , u⇤i�) : V (h(q, s|�i�), CPi� (q, s|�i� , u⇤i�)) = V (0, 0),

i� = min

i2{1,...,I}
i :

i
X

k=1

⌘k � ⇧(f(q)),

s = f(q) : CPi� (q, f(q)|�i� , u⇤i�) = CPi

⇣

q, f(q)|�i, u(CP )

i

⌘

, i 2 {1, ..., I}\{i�} (16)

⇧(f(q)) =

2

6

6

6

6

6

4

R S
max

0

R f�1

(s)
0

'(q, s) dq ds, if S
max

 Q
max

;

R f(Q
max

)

0

R f�1

(s)
0

'(q, s) dq ds

+

R S
max

f(Q
max

)

R Q
max

0

'(q, s) dq ds, if S
max

> Q
max

(17)

8 1  i < i� :

V (h(q, s|�i), E⇤
i (q, s|�i, u⇤i )) = V

�

h(q, gi,i+1

(q)|�i), E⇤
i+1

�

q, gi,i+1

(q)|�i+1

, u⇤i+1

��

, (18)

8 i� < i  I :

V (h(q, s|�i), E⇤
i (q, s|�i, u⇤i )) = V

�

h(q, gi�1,i(q)|�i), E⇤
i�1

�

q, gi�1,i(q)|�i�1

, u⇤i�1

��

, (19)

8i, s = gi,i+1

(q) :

E⇤
i (q, gi,i+1

(q)|�i, u⇤i ) = E⇤
i+1

(q, gi,i+1

(q)|�i+1

, u(i+1)

) (20)
i

X

k=1

⇧i(gi,i+1

(q)) =

i
X

k=1

⌘i, i 2 {1, ..., I}, where (21)

i
X

k=1

⇧i(gi,i+1

(q)) =

2

6

6

6

6

6

6

6

4

R S
max

Si
min

R g�1

i,i+1

(s)

Qi
min

'(q, s) dq ds, if S
max

 Q
max

;

R gi,i+1

(Q
max

)

Si
min

R g�1

i,i+1

(s)

Qi
min

'(q, s) dq ds

+

R S
max

gi,i+1

(Q
max

)

R Q
max

0

'(q, s) dq ds, if S
max

> Q
max

(22)

The limits of segments are defined through equations (11)-(14).

Demonstration. The existence of equilibrium is ensured by condition (10) of proposition 6, and

by the property of the density function on the supply side
⇣

R S
max

0

R Q
max

0

'(q, s)dqds = 1

⌘

and

the distribution of consumers groups weights on the demand side
⇣

PN
i=1

⌘i = 1

⌘

.

The demonstration of the hedonic price function equations resulting from the equilibrium

follows from the construction described above.
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3 Results and implications

3.1 Implicit prices of housing attributes

Theorem 2 establish the existence of equilibrium and its equations. The hedonic price function

resulting from equilibrium is continuous and piecewise defined, and each segment corresponds to

the equilibrium groups bid surfaces. However, the marginal hedonic price functions (represented

implicit prices of housing attributes) are not continuous:

Theorem 3. In the presence of an horizontal differentiation of housing, and discrete hetero-

geneity of consumer’ preferences for housing attributes, both the implicit price of environmental

quality and the implicit price of intrinsic attribute have discontinuities on the boundaries be-

tween the segments of the hedonic price function.

Demonstration. See Appendix A.5.

Theorem 3 extends the Baudry and Maslianskaia-Pautrel’s (2012) result found with vertical

differentiated housing supply: The segmentation of the hedonic price function is a result of

discrete consumer heterogeneity whatever the differentiation on the supply side.

To illustrate the results of Theorem 3, we use numerical simulations computed for each set

of single-crossing assumptions from the following nested CES utility function:

U(h(q, s|�j), X) = [↵ h(q, s|�j)� + (1� ↵)X�
]

1

� , � 2]0, 1[, ↵ 2 [0, 1[. (23)

The index of housing services level is: h(q, s|�j) = [�jq
�
+ (1� �j) s

�
]

1

� .

We study three groups of individuals according to their preferences parameter � with �
1

= 0.1

(low preference for the environmental housing quality), �
2

= 0.5 (average preference for the envi-

ronmental housing quality), �
3

= 0.7 (strong preference for the environmental housing quality).

The simulations are carried out for the consumer income R = 19, 900 and the parameters of the

utility function ↵ = 0.4 and � = 0.7, calibrated from the French data. The group weights are

respectively: ⌘
1

= 0.17, ⌘
2

= 0.74, ⌘
3

= 0.09, and the joint distribution of housing attributes is

supposed to be uniformly distributed on the intervals [0, 1 000]⇥ [0, 1 500].
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Figure 2 represents numerical simulations which illustrate the theoretical results. The he-

donic price is the envelope surface of the groups’ bid surfaces (figure 2(a)).15 The graph 2(b)

represents the boundaries between consumer groups in the plane (Q,S). The implicit price of

environmental quality and the implicit price of intrinsic housing quality are both discontinuous

on the borders of the segments (graphs 2(c) and 2(d)).

Figure 2: Hedonic price function and implicit prices. Application for a nested CES function

(a) Hedonic price function.

S

Q0

(b) Boundaries between groups (projection).

S

Q

P

0
(c) Implicit price of the environmental housing
quality.

S

Q

P

(d) Implicit price of the intrinsic housing quality.

The generalized results on discontinuity of the implicit price is particularly important for

environmental valuation. Indeed, it is contrary to Rosen’s, which assumes at the second stage

of the estimation procedure that the implicit price is continuous. Thus, our model is outside the

scope of Rosen’s model and the 2 stages estimation procedure cannot be used.
15The equilibrium equations are obtained in Appendix B.
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3.2 Sorting of the demand

One of the most important implications of the hedonic equilibrium of the segmentation model

concerns the sorting of the demand for environmental quality.

Proposition 7. Under assumptions H1 and H2, the hedonic equilibrium leads to a partial

sorting of demand for both housing attributes (see Figure 3):

8i 6= j (consumer groups), such that �i < �j 9A 2 i, B 2 i, C 2 j such that QA < QC < QB.

Proof. Follows from Theorem 2.

The results about partial sorting means that consumers with higher preference for environ-

mental quality (�
2

< �
1

as shown at Figure 3) could chose at equilibrium housings with lower

level of environmental quality than consumers with lower level of � (QC < QB). This result can

be viewed as dual to the two dimensions stratification result obtained by Epple and Platt (1998)

for a sorting model. In their model there is a partial stratification of consumers by their income

and preferences at equilibrium, when consumers sort themselves into communities. Namely con-

sumers with higher and lower income and/or preference parameters could be localized in the

same community.

3.3 Implications for welfare analysis

Hedonic environmental valuation contributes to the analysis of public environmental policy by

studying its impact on welfare. One measure of welfare is consumer surplus. The following

section analyses implications of the present model for consumer surplus.

Consumer surplus for a group i can be defined as the difference between maximal consumer

willingness to pay for housing exhibiting particular attributes and real expenditure on this

housing. Maximal willingness to pay is given by the group’s participation constraint, and the

real expenditure corresponds to group’s equilibrium bid function. So a group’s consumer surplus

can be written as: CSi = CPi(q, s|�i, u(CPi)
)� E⇤

i (q, s|�i, u⇤i ).
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Figure 3: Partial sorting of housing attributes demand
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B  
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QA QC QB

If at equilibrium a group remains on its participation constraint it means that the sellers

extract the totality of the consumer surplus for this group. If at equilibrium a group is on

bid function other than its participation constraint, the group’s consumers surplus is positive,

because the price of housing is less than their maximal willingness to pay.

Proposition 8. Under assumptions H1 and H2, CSi� = 0, where i� is found from (10).

Proof. Follows Theorem 2.

The question about which group fulfills its participation constraint depends on the relation-

ship between the summary weight of the first groups and the share of the supply available for

these groups to the left of the intersection of group participation constraints (see Theorem 2).

Thus, in this case, the sellers do not necessarily extract the entire consumer surplus from the

group with the lowest parameter of preferences �
1

, contrairely to the case of vertical differentiated

housing market. Therefore, a modification of the environmental quality of housing can involve

a modification of the equilibrium and thus, the group from which the whole consumer surplus is

extracted. This result can affect the valuation of the change in welfare following a modification
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of the environmental quality of housing, and therefore the environmental cost-benefit analysis.

4 Conclusion

The theoretical model developed in this paper shows how groupwise heterogeneity on the demand

side influences the equilibrium of a housing market with horizontal differentiated supply and the

formation of the hedonic price function. It develops on the hedonic analysis with segmentation

of Baudry and Maslianskaïa-Pautrel (2012) for vertical differentiation of housing supply by

investigating the more realistic case of horizontal differentiation. Both models appear to belong

to a third type of modeling underlying hedonic environmental assessment complementing the

“ traditional” hedonic model of Rosen (1974) and “new” hedonic or sorting models, developed

among others, by Epple and Platt (1998); Epple and Sieg (1999); Kuminoff (2009). While the

first model considers the formation of an equilibrium in the market for differentiated products

by assuming a continuous heterogeneity on the demand side and a continuous distribution on

the supply side, and the second examines the allocation of a continuum of individuals with

a continuous heterogeneity between a discrete number of communities (each characterized by

an homogeneous amenities provision and housing prices within each community), our model

examines the implications of discrete heterogeneity of consumers in the presence of a continuous

distribution on the supply side.

Our modeling is based on the theoretical framework of Rosen (1974), assuming that the

supply side distributions of two housing attributes (environmental quality and intrinsic quality)

are fixed. This assumption is consistent with the short-term setting observed in empirical hedonic

models. Each house is characterized by a level of housing services aggregating two housing

attributes. We assume an horizontal differentiation of housing in which the aggregate function

differs from one consumer group to another.

There are three main results. First, we demonstrate that the groupwise consumer hetero-

geneity leads to a segmentation of the hedonic price function in the housing market equilibrium.
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Hedonic price function is continuous, but built of different segments corresponding to different

consumer groups. As with vertical differentiation case, the segmentation of the hedonic price

function implies a discontinuity of the implicit price of environmental quality of housing on the

borders of the segments, so the “usual” estimation procedure developed in Rosen’s model cannot

be used.

Our second result concerns sorting of consumer demand. We demonstrate that the segmen-

tation of hedonic price function leads to partial sorting of the demand for housing attributes by

consumers groups. This result can be viewed as dual to the partial two-dimensional stratification

by consumer income and preferences in sorting models (Epple and Platt, 1998).

Finally, our third result concerns consumer surplus extraction in equilibrium. Fixed supply

and short-run assumption leads a subset of sellers to extract the total consumer surplus of one or

more groups at equilibrium. We show that the group with the lowest parameter for environmental

quality is not necessarily the one with its total surplus extracted. Recall that in the vertical

differentiation case, the whole surplus is extracted from the first consumer group (with the lowest

preference parameter). Thus segmentation has implications for the assessment of welfare related

to changes in environmental quality, and thus for the cost/benefit environmental analysis. The

study of these implications constitutes a promising topic for future research.

This article calls for further investigations. From the theoretical point of view, it would be

interesting to study a mixed case with continuous consumers income heterogeneity and group-

wise heterogeneity in housing attribute preferences. This would relax the strong assumption of

equality of income among individuals in the presence of an horizontal differentiation of housing.

In addition, since any decision on location is a joint result based on the “ housing/work” choice,

the segmentation model developed in this paper could be also extended to include the labor

market in order to examine the formation of a “general hedonic equilibrium” as Kuminoff (2011)

in a sorting model.

From an empirical point of view, the present paper develops the basic modeling for econo-
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metric methods which could accurately deal with aspects of the housing market segmentation.

In particularly, the nonparametric models studied in Ekeland et al. (2004) and Heckman et al.

(2010) seem to be able to deal better with the discreteness in the price function predicted by

this paper.
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Figure 4: Different configurations for consumer groups boundaries
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Appendices
A Proofs and demonstrations

A.1 Proof of proposition 3

Let two iso-H curves on the plane (Q,S), corresponding to the same housing services level ˜h, of

groups i and j such that �i < �j : s = s̃i(q|�i) : h(q, s̃i(q|�i)|�i) = ˜h and

s = s̃j(q|�j) : h(q, s̃j(q|�j)|�j) = ˜h. Let (q⇤, s⇤) be the intersection point of s̃i and s̃j .

We assume that at equilibrium there exists (q
0
i, s

0
i) 2 s̃i(·) and (q

0
j , s

0
j) 2 s̃j(·) such that:

8

<

:

q
0
j < q⇤ < q

0
i

s
0
j > s⇤ > s

0
i

(A.1)

This means that the iso-H curve of the group with higher level of � is located to the left of the

iso-H curve of the group with lower level of �.

Since �i < �j , it follows that s0
j = s̃j(q

0
j |�j) > s̃i(q

0
i|�i)

.
= s

00
i . Consequently, the point (q0

j , s
0
j)

is located above the iso-H curve s̃i(·) of the group i. This means that individuals of group i

achieve a higher utility level if they are located on the iso-H curve passing through the point

(q
0
j , s

0
j) (the iso-H curves of both groups correspond to the same price level). The incentive

constraint is not satisfied and thus the condition (A.1) is not satisfied at equilibrium.

Consequently, at equilibrium the iso-H curves are ordered in the plane (Q,S) in increasing

order of �, from the left to the right along the axis Q. Q.E.D.

A.2 Demonstration of theorem 1

1

�. The saturation of incentive constraints with respect to adjacent groups follows immediately

from Proposition 3. Indeed, suppose that at equilibrium
n

(

¯Q⇤
i,i+1

, ¯S⇤
i,i+1

)

o

=

�

(q, s) :

�

h(q, s|�i) = ¯H
�

&

�

E⇤
i (

¯H|�i, u⇤i ) = P ⇤
(

¯H)

� 

T

�

(q, s) :

�

h(q, s|�i+1

) =

¯H
�

&

�

E⇤
i+1

(

¯H|�i+1

, u⇤i+1

) = P ⇤
(

¯H)

� 

. (

¯Q⇤
i,i+1

, ¯S⇤
i,i+1

) is the in-

tersection point of the iso-H equilibrium curves of groups i and i+1, corresponding to a housing

services level ¯H.

So, h( ¯Q⇤
i,i+1

, ¯S⇤
i,i+1

)|�i) = h( ¯Q⇤
i,i+1

, ¯S⇤
i,i+1

|�i+1

) and Ei(
¯Q⇤
i,i+1

, ¯S⇤
i,i+1

|�i, u⇤i ) = Ei+1

(

¯Q⇤
i,i+1

, ¯S⇤
i,i+1

|�i+1

, u⇤i+1

).

i



Consequently V (h( ¯Q⇤
i,i+1

, ¯S⇤
i,i+1

)|�i), Ei(
¯Q⇤
i,i+1

, ¯S⇤
i,i+1

|�i, u⇤i ))

= V (h( ¯Q⇤
i,i+1

, ¯S⇤
i,i+1

)|�i), Ei+1

(

¯Q⇤
i,i+1

, ¯S⇤
i,i+1

|�i+1

, u⇤i+1

)), and

V (h( ¯Q⇤
i,i+1

, ¯S⇤
i,i+1

)|�i+1

), Ei+1

(

¯Q⇤
i,i+1

, ¯S⇤
i,i+1

|�i+1

, u⇤i+1

)) = V (h( ¯Q⇤
i,i+1

, ¯S⇤
i,i+1

)|�i+1

), Ei(
¯Q⇤
i,i+1

, ¯S⇤
i,i+1

|�i, u⇤i )),

from which (

¯Q⇤
i,i+1

, ¯S⇤
i,i+1

) 2 CI
ki,i+1

i,i+1

and (

¯Q⇤
i,i+1

, ¯S⇤
i,i+1

) 2 CI
kij
i+1,i, so CI

ki+1,i

i,i+1

⌘ E⇤
i+1

(the in-

centive constraint of the group i with respect to the group i+ 1 and the incentive constraint of

the group i + 1 with respect to group i are equilibrium bid surfaces of the groups i and i + 1

respectively).

2

�. The incentive constraint of group i with respect to group j such that: j 6= i+ 1, j 6= i
1

cannot be saturated at equilibrium because, if it were the iso-H curves of the groups between i

and j would not be monotonic.

1

� and 2

� demonstrate the validity of theorem 1.

A.3 Proof of proposition 5

Consider the participation constraints of three groups i
1

< i
2

< i
3

: CPi
1

= Ei
1

(s, q|�i
1

, u(CPi
1

)

),

CPi
2

= Ei
2

(s, q|�i
2

, u(CPi
2

)

), CPi
3

= Ei
3

(s, q|�i
3

, u(CPi
3

)

). Since the “outside the market” alter-

native does not depend on the parameter �, and by definition the participation constraint we

obtain: u(CPi
1

)

= u(CPi
2

)

= u(CPi
3

)

= U(R, 0)
.
= u0.

Adopting the following notation:

s = f
12

(q) for the intersection curve between the surfaces CPi
1

and CPi
2

;

s = f
23

(q) for the intersection curve between the surfaces CPi
2

and CPi
3

;

s = f
13

(q) for the intersection curve between the surfaces CPi
1

and CPi
2

.

By definition of the participation constraint

CPi
1

(q, f
12

(q)|�i
1

, u0) = CPi
2

(q, f
12

(q)|�i
2

, u0) = F
12

(q, f
12

(q)) (A.2)

CPi
2

(q, f
23

(q)|�i
2

, u0) = CPi
3

(q, f
23

(q)|�i
3

, u0) = F
23

(q, f
23

(q)) (A.3)

CPi
1

(q, f
12

(q)|�i
1

, u0) = CPi
3

(q, f
13

(q)|�i
3

, u0) = F
13

(q, f
13

(q)) (A.4)

The single-crossing condition and the monotony of the boundary between two groups implies

ii



that either the curves f
12

(q), f
23

(q), f
13

(q) are similar, or each pair of curves has only one

intersection point.

By definition of the “outside the market” alternative and of the participation constraint:

f
12

(0) = f
23

(0) = f
13

(0) = 0. Consequently, if the curves do not coincide they cross each other

in the same point (0, 0).

Let f
12

(q) 6= f
23

(q) 6= f
13

(q), if q 6= 0. We first suppose that f
12

(q̃) < f
23

(q̃) < f
13

(q̃), 8q̃ > 0.

Adopting the following notation for a given level of q (q = q̃): s̃
12

= f
12

(q̃); s̃
23

= f
23

(q̃);

s̃
13

= f
13

(q̃).

1

�. By substituting the point (q̃, s̃
12

) into (A.2), we obtain:

CPi
1

(q̃, s̃
12

|�i
1

, u0) = CPi
2

(q̃, s̃
12

|�i
2

, u0) = F
12

(q̃, s̃
12

)

.
=

˜F
12

(A.5)

If ˜h
12

for the level of H corresponding to iso-H curves of groups i
1

and i
2

, which cross each

other in the point (q̃, s̃
12

), following (A.5), the price corresponding to the iso-H curve ˜h
12

is ˜F
12

.

Given the proof of proposition 3 (see Appendix A.1), the iso-H curve of the group i
1

is located

to the left of the iso-H curve of the groups i
2

.

Let (q
0
223

, s
0
223

) be the intersection point of the iso-H curve of the group i
2

(hi
2

(q, s|�i
2

) =

˜h
12

) due to the intersection curve of groups i
2

and i
3

participation constraints (s = f
23

(q)).

Ei
2

(q
0
223

, s
0
223

) =

˜F
12

, because of the iso-H curve of the group i
2

corresponds to iso-price ˜F
12

.

Consider the iso-H curve of the group i
3

, passes through the point (q0
223

, s
0
223

). As this point

belongs to the intersection curve of groups i
2

and i
3

participation constraints, it follows that:

Ei
3

(q
0
223

, s
0
223

) = Ei
3

(q
0
223

, s
0
223

) =

˜F
12

.

As f
23

(q) > f
12

(q), 8q > 0, the iso-H curve of group i
2

is located to the right of the curve

f
23

(q), which is contrary to the proof of proposition 3. Thus we obtain that f
23

(q) < f
12

(q), 8q >

0.

2

�. Looking at the point (q̃, s̃
23

). By substituting it into (A.3), we obtain

CPi
2

(q̃, s̃
23

|�i
2

, u0) = CPi
3

(q̃, s̃
23

|�i
3

, u0) = F
23

(q̃, s̃
23

)

.
=

˜F
23

.
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Let (q
0
212

, s
0
212

) be the intersection point of the iso-H curve of the group i
2

corresponding to

the price level ˜F
23

, and of the intersection curve of the groups i
1

and i
2

participation constraints,

˜f
12

. Thus,

CPi
2

(q
0
212

, s
0
212

) =

˜F
23

(A.6)

Let (q
0
312

, s
0
312

) be the intersection point of the iso-H curve of the group i
3

corresponding to

the price level ˜F
23

, and of the intersection curve of the groups i
1

and i
2

participation constraints,

˜f
12

. We obtain for the iso-H curve of the group i
2

passing through the point (q
0
312

, s
0
312

)

CPi
2

(q
0
312

, s
0
312

) = CPi
3

(q
0
312

, s
0
312

) =

˜F
23

(A.7)

Conditions (A.6) and (A.7) mean that CPi
2

(q
0
212

, s
0
212

) = CPi
2

(q
0
312

, s
0
312

) or equivalently

f
12

(q
0
212

) = f
12

q
0
312

, which contradicts the strict monotony of the function s = f
12

(q). Finally

we obtain intersection curve f
12

(q) coincides with the intersection curve f
23

(q), 8q > 0.

By proceeding in the same way we obtain f
12

(q) = f
13

(q), and thus all participation con-

straints have the same intersection curve. Q.E.D.

A.4 Demonstration of proposition 6

Looking at the relationship between 1

st group’s weight, ⌘
1

, and the market share available for

this group to the left of the curve F (q, f(q)), called ⇧(f(q)), two cases are possible:

Case (a): ⇧(f(q))  ⌘
1

, (A.8)

Case (b): ⇧(f(q)) > ⌘
1

, (A.9)

where the share ⇧(f(q)) is defined according to whether the intersection curve s = f(q) achieves

the maximum level of S inside or outside the domain of the variable Q (see figure 5):

⇧(f(q)) =

2

6

6

6

4

R S
max

0

R f�1

(s)
0

'(q, s) dq ds, si S
max

 Q
max

;

R f(Q
max

)

0

R f�1

(s)
0

'(q, s) dq ds+

+

R S
max

f(Q
max

)

R Q
max

0

'(q, s) dq ds, si S
max

> Q
max
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Figure 5: Two cases for market share ⇧(f(q)) calculus

S  

Q 

S ma x 

Q ma x 

s = f (q)

f q( )( )

S  

Q 

S ma x 

Q ma x 

s = f (q)

f q( )( )

f  -1(Smax)

Case (a). The market share ⇧(f(q)) is lower that the 1

st

group’s weight

The condition (A.8) implies that consumers of the 1

st group are located at equilibrium on their

participation constraint CP
1

. According to (A.8) and (5) the boundary between group 1 and

group 2 is located to the right of the curve of intersection of participatory constraints, i.e.

where the groups’ participation constraints are ordered in increasing order of the parameter

�. In this case, if at equilibrium the individuals of the 1

st group are on their participation

constraint, consumers in other groups can not even consider the purchase of goods purchased

by the consumers of the 1

st group on the left of the intersection because their participation

constraints are below that one of the 1

st group. The boundary between groups 1 and 2 in plane

(Q,S) is defined using the following equation:
R S1

max

0

R g�1

12

(s)
0

'(q, s) dq ds = ⌘
1

.16

Proceeding in a similar way to assumptions (H 0
1) and (H 0

2), (where the intersection of par-

ticipation constraints belongs to the plane of coordinates (S, P ))we obtain that at equilibrium,

consumers of groups 2, ..., N are located on the incentive constraints of their group with respect

to the previous group and the boundary s = gi�1,i(q) between two groups i and i� 1 is defined

implicitly from the equation
Pi�1

k=1

⇧k(gk,k+1

(q)) =
Pi�1

k=1

⌘k, i � 2; where the sum of the market

shares
Pi�1

k=1

⇧k(gk,k+1

(q)) is defined according to the disposition of the boundary between two
16If the condition (A.8) is an equality, it means that at equilibrium the group 2 participation constraint is also

saturated, and starting from the group 3 the incentive constraints with the previous group are saturated.
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groups s = gi�1,i(q) with respect to the domains of variables Q and S (see figure 6):

i�1

X

k=1

⇧k(gk,k+1

(q)) =

2

6

6

6

6

6

6

6

6

4

R S
max

Si�1

min

R g�1

i�1,i(s)

Qi�1

min

'(q, s) dq ds, si S
max

 Q
max

,

R gi�1,i(Qmax

)

Si�1

min

R g�1

i�1,i(s)

Qi�1

min

'(q, s) dq ds

+

R S
max

gi�1,i(Qmax

)

R Q
max

0

'(q, s) dq ds, si S
max

> Q
max

;

where
⇢

Si�1

min

= gi�1,i(0),

Qi�1

min

= 0,
si gi�1,i(0) � 0, and

⇢

Si�1

min

= 0,

Qi�1

min

= g�1

i�1,i(0),
si g�1

i�1,i(0) � 0.

Figure 6: Calculus of
Pi�1

k=1

⇧k(gk,k+1

(q))

Qmax
i-1

S  

Q
 

S max 

Qmax 

Smax
i-1

s = g    (q)i-1,i

k gk,k+1 q( )( )
k=1

i 1

0 -1

S  

Q
 

S max 

Qmax  

Smax
i-1 s = g    (q)i-1,i

k gk,k+1 q( )( )
k=1

i 1

0

maxQ i

S  

Q
 

S max 

Qmax 

s = g    (q)i-1,i

k gk,k+1 q( )( )
k=1

i 1

0

S  

Q
 

S max 

Qmax 

s = g    (q)i-1,i

k gk,k+1 q( )( )
k=1

i 1

0

Smax
i-1

Case (b). The market share ⇧(f(q)) is higher than the 1

st

group weight

Condition (A.9) implies that at equilibrium, consumers of the first group can not be situated on

their constraint participation CP
1

. Indeed, if they could, the boundary between the groups 1 and

2 would be located to the left of the intersection curve F (q, f(q)), where groups’ participation

vi



constraints are ordered in inverse order to preference parameters �. Thus the surface CP
1

would

be above the surface CP
2

on the corresponding points on the frontier between the two groups.

The consumers of group 2 can not be located above the surface CP
2

, so if the situation described

above is an equilibrium, then the prices of homes purchased by group 2 would be located below

the equilibrium bid surface of group 1, which is contrary to proposition 2.

In contrast, consumers of group 2 may be located on their constraint participation CP
2

at

equilibrium, subject to the boundary between groups 2 and 3 being located to the right of the

intersection of participation constraints:

⌘
1

+ ⌘
2

� ⇧(f(q)) (A.10)

⇧(f(q)) =

2

6

4

R S
max

0

R f�1

(s)
0

'(q, s) dq ds, if S
max

 Q
max

;

R f(Q
max

)

0

R f�1

(s)
0

'(q, s) dq ds +

R S
max

f(Q
max

)

R Q
max

0

'(q, s) dq ds, if S
max

> Q
max

In this case, the group 1 consumers are located at equilibrium on the bid surface which is the

incentive constraint of group 1 with respect to group 2, passing through the boundary between

groups 1 and 2. The function of hedonic price equilibrium for groups 3, 4,..., I, is defined as

in the case (a): on the basis of the incentive constraints of the group relative to the previous

group, passing through boundary between the groups.

Let s = g
12

(q) be the equilibrium boundary between groups 1 and 2 (projection on the plane

(Q,S)), s = g
23

(q) the equilibrium boundary between the groups 2 and 3,..., s = g(i, i+ 1) the

equilibrium boundary between the groups i and i+1. So the equilibrium hedonic price function

is composed on segments E⇤
1

, E⇤
2

, E⇤
3

, ..., E⇤
N , such that the following equations are satisfied:

E⇤
2

= CP
2

(q, s|�
2

, u⇤
2

),

V (h(q, s|�
1

), E⇤
1

(q, s|�
1

, u⇤
1

)) = V (h(q, g
12

(q)|�
1

), E⇤
2

(q, g
12

(q)|�
2

, u⇤
2

))

V (h(q, s|�i), E⇤
i (q, s(q)|�i, u⇤i )) = V

�

h(q, gi�1,i(q)|�i), E⇤
i�1

�

q, gi�1,i(q)|�i�1

, u⇤i�1

��

, i 2 {3, ..., I}

8 i 2 {1, ..., I � 1}, s = gi,i+1

(q) : E⇤
i (q, gi,i+1

|�i, u⇤i ) = E⇤
i+1

(q, gi,i+1

|�i+1

, ui+1

),

Pi
k=1

⇧i(gi,i+1

(q)) =
Pi

k=1

⌘i, i 2 {1, ..., I}
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Pi
k=1

⇧i(gi,i+1

(q)) =

2

6

6

6

6

6

6

6

4

R S
max

Si
min

R g�1

i,i+1

(s)

Qi
min

'(q, s) dq ds, si S
max

 Q
max

;

R gi,i+1

(Q
max

)

Si
min

R g�1

i,i+1

(s)

Qi
min

'(q, s) dq ds

+

R S
max

gi,i+1

(Q
max

)

R Q
max

0

'(q, s) dq ds, si S
max

> Q
max

The segments limits are defined according to the disposition of the boundaries on the left and

on the right of each segment (see Figure 4 which illustrates different possible configurations).

Thus, on each interior segment, 8 1 < i < I, q 2
⇥

Qi
min

, Qi
max

⇤

, s 2
⇥

Si
min

, Si
max

⇤

:

Qi
min

=



0, if gi�1,i(0) � 0,

g�1

i�1,i(0), if g�1

i�1,i(0) � 0;

Qi
max

=



g�1

i,i+1

(S
max

), if gi,i+1

(Q
max

) � S
max

,

Q
max

, if gi,i+1

(Q
max

) < S
max

.

Si
min

=



gi,i+1

(0), if gi,i+1

(0) � 0,

0, si g�1

i,i+1

(0) � 0;

Si
max

=



S
max

, if gi�1,i(Qmax

) � S
max

,
gi�1,i(Qmax

), if gi�1,i(Qmax

) < S
max

.

For the first segment, i = 1, q 2
⇥

0, Q1

max

⇤

, s 2
⇥

S1

min

, S
max

⇤

:

Q1

max

=



g�1

1,2(Smax

), if g
1,2(Qmax

) � S
max

,

Q
max

, if g
1,2(Qmax

) < S
max

.
S1

min

=



g
1,2(0), if g

1,2(0) � 0,

0, if g�1

1,2(0) � 0;

For the last segment, i = I, q 2
⇥

QN
min

, Q
max

⇤

, s 2
⇥

0, SN
max

⇤

:

QN
min

=



g�1

N�1,N (0), if g0N�1,N (0) � 0,

0, if gN�1,N (0) � 0.
SN
max

=



S
max

, if gN�1,N (Q
max

) � S
max

,
gN�1,N (Q

max

), if gN�1,N (Q
max

) < S
max

;

Recall the condition (A.10) necessary for the equilibrium described above ⌘
1

+ ⌘
2

� ⇧(f(q)),

where ⇧(f(q)) =

2

6

4

R S
max

0

R f�1

(s)
0

'(q, s) dq ds, if S
max

 Q
max

;

R f(Q
max

)

0

R f�1

(s)
0

'(q, s) dq ds+
R S

max

f(Q
max

)

R Q
max

0

'(q, s) dq ds, if S
max

> Q
max

This condition can be generalized for all groups and finally we obtain: the group i� which

saturates its participation constraint at equilibrium can be found using the following condition:

i� = min

i2{1,...,I}
i :

i
X

k=1

⌘k � ⇧(f(q)). Q.E.D.

A.5 Demonstration of theorem 3

Looking at the section of the hedonic price surface corresponding to a group’s i equilibrium bid

function. By the definition 1 of the individual bid function, the equilibrium prices for the group

i satisfy:

V (h(q, s), P ⇤
(q, s)) = u⇤i , (q, s) 2 Dhi (A.11)
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where u⇤i is the equilibrium reference utility of group i, and Dhi is its definition domain equal

to [Qmin

i , Qmax

i ]⇥ [Smin

i , Smax

i ].

The partial derivatives of (A.11) with respect to Q, and with respect to S, give:

@P

@Q

�

�

�

(q,s)2Dhi

= � @V/@h @h/@Q

@V/@P

�

�

�

(q,s)2Dhi

, (A.12)

@P

@S

�

�

�

(q,s)2Dhi

= � @V/@h @h/@S

@V/@P

�

�

�

(q,s)2Dhi

. (A.13)

The equations (A.12) and (A.13) are verified for each group i 2 {1, ..., I}.

We now study two adjacent groups i and i + 1. The Spence-Mirrlees conditions (H1) and

(H2), imply that @
@�

⇣

@P
@Q

⌘

> 0, 8S, 8�, and @
@�

�

@P
@S

�

< 0, 8Q, 8�. Consequently:

@P ⇤
i

@Q

�

�

�

q=Qmax

i ,s=gi,i+1

(q)
<

@P ⇤
i+1

@Q

�

�

�

q=Qmax

i ,s=gi,i+1

(q)
, (A.14)

@P ⇤
i

@S

�

�

�

q=Qmax

i ,s=gi,i+1

(q)
>

@P ⇤
i+1

@S

�

�

�

q=Qmax

i ,s=gi,i+1

(q)
, (A.15)

as �i < �i+1

.

The inequalities (A.14) and (A.15) involve the discontinuity of implicit prices of housing

environmental quality and of housing intrinsic quality on the boundaries of the segments. This

demonstrates the theorem A.5. Q.E.D.

B Application to a nested CES direct utility function

In the case of a nested CES direct utility function the equation of group i participation constraint,

CPi, becomes [↵ (�iq
�
+ (1� �i)s

�
) + (1� ↵)(R� CPi(q, s))

�
]

1

�
= (1� ↵)

1

�R,

CPi(q, s) = R�
h

R� � ↵
1�↵ (�iq

�
+ (1� �i)s

�
)

i

1

� . The solution of the equation

CPi(q, s) = CPj(q, s) provides the equation for the intersection curve of participation constraints

CPi(q, s) and CPj(q, s):

s = q. (B.1)

According to the theoretical result, the intersection function is increasing in q and does not

depend on the �.
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The group i equilibrium bid function for the nested CES specification case is written
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level in the bid function definition.

According to proposition 6, the group for which the participation constraint is fulfilled, is ob-

tained from:
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In the case of an uniform joint density function by replacing f�1

(s) by the equation (B.1),

the condition is written
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One the group i� which fulfills its participation constraint is defined, the hedonic price
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, where the segment limits are defined from the equations (11)-(14).

At equilibrium according to the theorem 2, for the consumers of groups i, such that i < i�,

the hedonic price function corresponds to their incentive constraints with respect to the next

group, passing through the boundary with the next group. The equation of the boundary,
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For the consumers of groups i > i� the equilibrium housing price corresponds to their incen-

tive constraints with respect to the previous group. The equation of the boundary is written in

this case: s =

⇣

q� � (u⇤
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� and the incentive constraint (equation 19 of the theorem
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The reference utility levels {u⇤i }Ni=1

are obtained from conditions (21)-(22) of the equality of

market share of a group and its weight (cf. 22). In the case of the nested CES utility function

and joint uniform density these conditions are written as:
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i 2 {1, ..., I}
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By construction of the equilibrium, u⇤i < u⇤i+1
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